## 5-2 Videos Guide

## 5-2a

Expressions below are given in $\mathbb{R}^{3}$. Analogous expressions exist for functions in $\mathbb{R}^{2}$ by simply leaving off the $z$ - or $\mathbf{k}$-component

- Line integral of a scalar function $f$ with respect to arc length: over a curve $C$ parameterized by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$

○ $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$ $=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$

- Note that $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$
- Line integral with respect to $x$
- $\int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t$ (likewise for $y$ and $z$ )


## Exercises:

5-2b

- Evaluate the line integral, where $C$ is the given curve.
- $\int_{C} x e^{y} d s, C$ is the line segment from $(2,0)$ to $(5,4)$

5-2c

- $\int_{C} x^{2} d x+y^{2} d y, C$ consists of the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$


## 5-2d

Expressions below are given in $\mathbb{R}^{3}$. Analogous expressions exist for functions in $\mathbb{R}^{2}$ by simply leaving off the $z$ - or $\mathbf{k}$-component

- Line integral of a vector field $\mathbf{F}(x, y, z)=P \mathbf{i}+Q \mathbf{j}+R \mathbf{j}$ over a curve $C$ parameterized by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$
- $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} P d x+Q d y+R d z$
- (This really means $\int_{C} P d x+\int_{C} Q d y+\int_{C} R d z$ )
- Note that $d \mathbf{r}=\mathbf{r}^{\prime}(t) d t$
- Also note that we generally parameterize $P, Q$, and $R$
- Final notes about orientation
- $\int_{-C} f(x, y, z) d x=-\int_{C} f(x, y, z) d x$ (and likewise for $y$ and $z$ )
and $\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}$ but $\int_{-C} f(x, y, z) d s=\int_{C} f(x, y, z) d s$


## Exercises:

5-2e

- Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $C$ is given by the vector function $\mathbf{r}(t)$.
$\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+x y \mathbf{j}+(y+z) \mathbf{k}$,
$\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}-2 t \mathbf{k}, 0 \leq t \leq 2$

5-2f

- Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+y e^{x} \mathbf{j}$ on a particle that moves along the parabola $x=y^{2}+1$ from $(1,0)$ to $(2,1)$.

