5-2 Videos Guide

5-2a

Expressions below are given in \mathbb{R}^3 . Analogous expressions exist for functions in \mathbb{R}^2 by simply leaving off the *z*- or **k**-component

• Line integral of a scalar function f with respect to arc length: over a curve C parameterized by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$

$$\circ \quad \int_{C} f(x, y, z) \, ds = \int_{a}^{b} f\left(x(t), y(t), z(t)\right) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} \, dt$$
$$= \int_{a}^{b} f\left(\mathbf{r}(t)\right) |\mathbf{r}'(t)| \, dt$$

• Note that
$$ds = |\mathbf{r}'(t)| dt$$

• Line integral with respect to x

•
$$\int_{C} f(x, y, z) dx = \int_{a}^{b} f(x(t), y(t), z(t)) x'(t) dt$$
 (likewise for y and z)

Exercises:

5-2b

• Evaluate the line integral, where *C* is the given curve.

•
$$\int_{C} xe^{y} ds$$
, C is the line segment from (2,0) to (5,4)

5-2c

• $\int_C x^2 dx + y^2 dy$, C consists of the arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3)

5-2d

Expressions below are given in \mathbb{R}^3 . Analogous expressions exist for functions in \mathbb{R}^2 by simply leaving off the *z*- or **k**-component

 Line integral of a vector field F(x, y, z) = Pi + Qj + Rj over a curve C parameterized by r(t) = ⟨x(t), y(t), z(t)⟩

$$\circ \quad \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{C} P dx + Q dy + R dz$$

- $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}(t) dt \int_C \mathbf{r} \cdot \mathbf{r} dz \int_C$ • (This really means $\int_C P dx + \int_C Q dy + \int_C R dz$)
- Note that $d\mathbf{r} = \mathbf{r}'(t)dt$
- \circ Also note that we generally parameterize *P*, *Q*, and *R*
- Final notes about orientation
 - $\int_{-c} f(x, y, z) dx = -\int_{c} f(x, y, z) dx \text{ (and likewise for } y \text{ and } z)$ and $\int_{-c} \mathbf{F} \cdot d\mathbf{r} = -\int_{c} \mathbf{F} \cdot d\mathbf{r}$ but $\int_{-c} f(x, y, z) ds = \int_{c} f(x, y, z) ds$

Exercises:

5-2e

• Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where *C* is given by the vector function $\mathbf{r}(t)$. $\mathbf{F}(x, y, z) = (x + y^2) \mathbf{i} + xy \mathbf{j} + (y + z) \mathbf{k}$, $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} - 2t \mathbf{k}$, $0 \le t \le 2$

5-2f

• Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} + ye^x \mathbf{j}$ on a particle that moves along the parabola $x = y^2 + 1$ from (1, 0) to (2, 1).